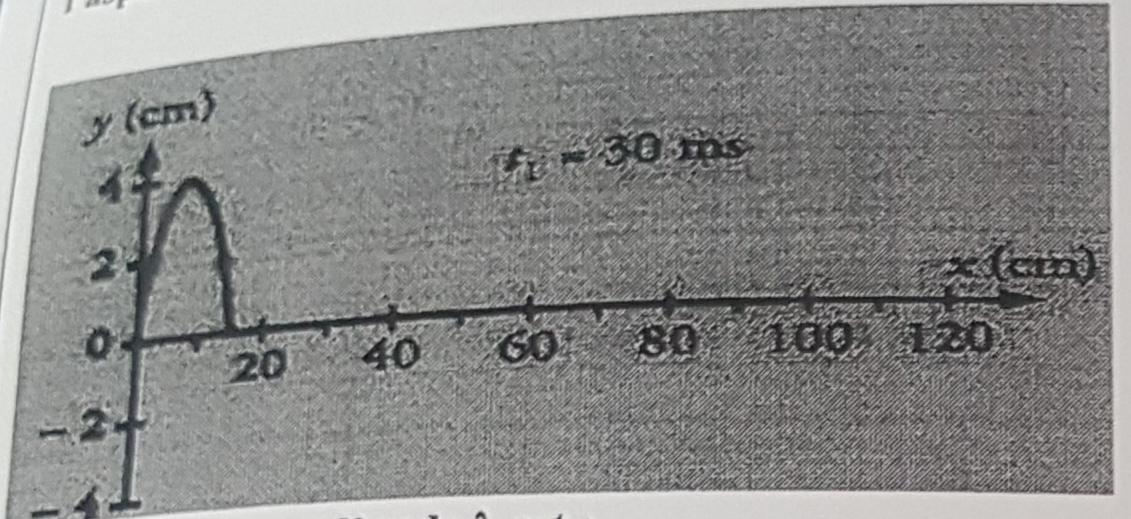
KOYAUME DU MAROC Ministère de la Santé

4°XNVE+ INC 4050 وزارة الصحة to Collo Ot 1 + 1 100 E

EXCEL


مباراة ولوج المعاهد العليا للمهن التمريضية وتقنيات الصحة - 21 يوليوز 2019_

المعامل: 2

المدة الزمنية: ساعة ونصف

المادة: الفيزياء

Q1,2,3: On attache l'extrémité d'une corde à un vibreur animé à l'instant mouvement sinusoïdal. Les figures ci-dessous recorde à un vibreur animé à l'instant Q1,2,3: On attache a l'instant t=0, d'un mouvement sinusoïdal. Les figures ci-dessous représentent t=0, d'un corde à deux instants différents (t1 et t2) : 1'aspect de la corde à deux instants différents (t₁ et t₂):

Q1: La longueur d'onde λ est:

Q2: La période T de l'onde:

Q3: La vitesse v de propagation de l'onde:

30 ms.

90 ms.

30 cm.

0,3 m.

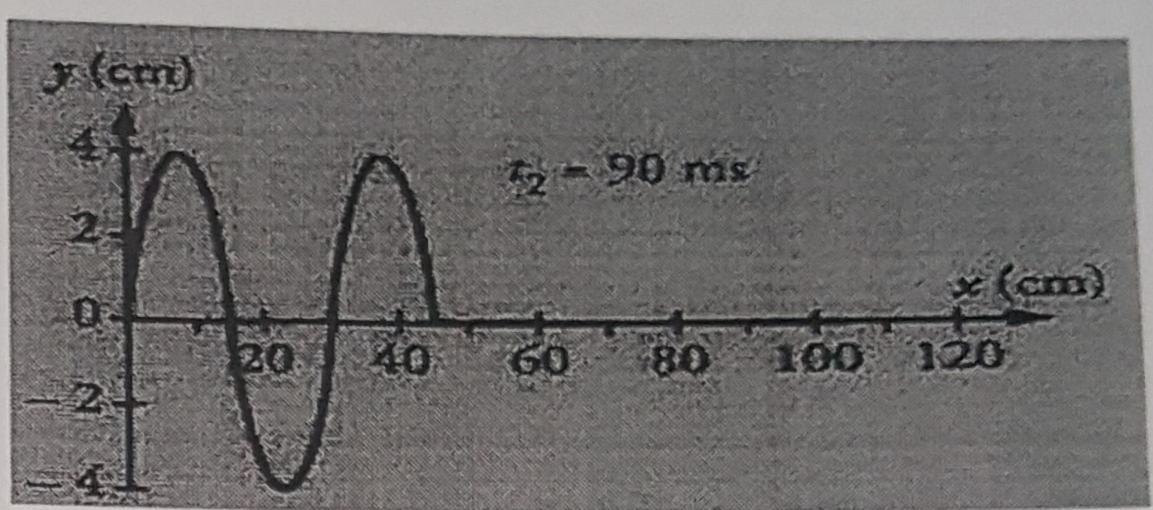
30 ms.

60 ms.

90 ms.

120 ms.

 $V = T/\lambda$.

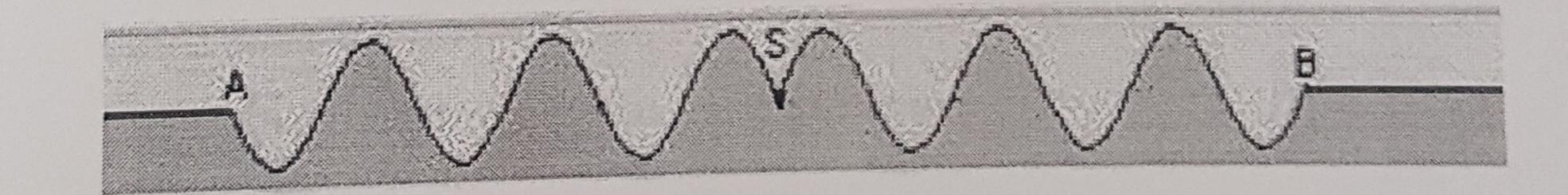

 $V = \lambda T$. V=5 m/s.

V=5 cm/s.

Q4,5,6,7: Une onde progressive sinusoïdale se propage à la surface d'eau depuis la source ponctuelle S avec une fréquence de N= 50 Hz à l'instant t=0. La figure suivante représente une partie de la surface d'eau à l'instant t avec l'amplitude à S est nulle.

La distance AB est de 3 cm.

س2،2،1: نربط احد طرفي حبل بهزاز يصدر موجة جيبية ابتداء من لحظة تاريخها t10 t2). المباينان التاليان يمثلان مظهر الحبل في لحظتين (t1, t2):


س1: طول الموجة λ هو:

س2: الدور الزمنى T للموجة:

س3: سرعة انتشار الموجة ٧ هي:

س7،6،5،4 : نتشر موجة متوالية جيبية ترددها N= 50 Hz على سطح لماء انطلاقًا من منبع نقطى S ابتداء من اللحظة t=0. الشكل التالى يمثل قطعا لسطح الماء في لحظة t حيث استطالة S منعدمة.

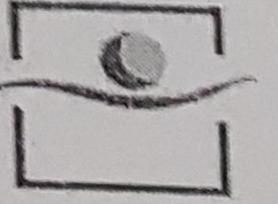
لمسافة بين AB تساوي 3 cm.

Q4: L'onde est:

- Onde longitudinale.
- Onde transversale. b)
- Onde lumineuse.
- Onde mécanique.

Q5: La valeur la longueur d'onde λ :

- 0,5 cm.
- 1 cm.
- 5 mm.
- 10 mm.


موجة طولية

موجة مستعرضة.

موجة ضوئية.

موجة ميكانيكية.

: قيمة طول الموجة λ:

- $d=(2 k+1)^{\frac{\lambda}{2}}$
- b) $d=k\lambda+\frac{\lambda}{2}$
- (c) $d=(2 k + 1) \lambda$.
- d) $d=(k+1)\lambda$.

س7: سرعة انتشار الموجة هي:

07: La vitesse de propagation de l'onde:

- $V = N \lambda$.
- $V = N/\lambda$.
- $V=d/\lambda$. $V = \lambda/d$.
- d'onde dans le vide λ_0 = 480 nm. L'indice de réfraction de l'eau n_e=1,33 et de verre n_v=1,51. La vitesse de l'onde dans le vide c= 3.108 m/s.

08,9: Un faisceau lumineux monochromatique passe

successivement à travers l'eau et le verre. Sa longueur

- Q8: La vitesse de propagation du faisceau dans l'eau Ve: Supérieure à celle dans le verre (vv).
 - Inférieure à celle dans le vide c.
 - c) Egale à celle dans le verre (v_v).
 - $Ve = 3.10^9 \text{ m/s}.$

Q9: La fréquence de l'onde dans l'eau Ve:

- a) Egale à celle dans le verre (v_v).
- Egale à celle dans le vide (v_0) .
- c) $v_c = c/\lambda_0$
- $v_c = \lambda_0/c$.

س8،9: يجتاز ضوء آحادي اللون الماء والزجاج تباعا. طول الموجة للإشعاع في الفراغ: λ0= 480 nm معامل الاتكسار للماء ne=1,33 والزجاج 1,51=nv.

سرعة انتشار الضوء في الفراغ c = 3.108 m/s.

س8: سرعة انتشار الضوء في الماء Ve.

أكبر من سرعة انتشار الضوء في الزجاج (٧٧). أصبغر من سرعة انتشار الضوء في الفراغ c. c) يساوي سرعة انتشار الضوء في الزجاج(٧٧). $.Ve = 3.10^9 \text{ m/s}$ (d)

س10،11: على أحد وجهى موشور من الزجاج زاويته 0 A=60 نرسل حزمة

ضونية رقيقة تتكون من 3 إشعاعات وذلك بزاوية ورود 660 =i.

معاملات الاتكسار للزجاج بالنسبة لهده الإشعاعات (1,1,2,13):

س9: تردد الموجة في الماء عV:

- a) يساوي تردد الموجة في الزجاج (٧٧).
- b) يساوي تردد الموجة في الفراغ (vo).

 $\lambda_1 = 435 \text{ nm}; \lambda_2 = 546 \text{ nm}; \lambda_3 = 646 \text{ nm}$

- $v_e=c/\lambda_0$ (c)
- $v_c = \lambda_0/c$ (d

س 10: العلاقة بين n2,n1 و n3

Q10,11: Sur une face d'un prisme en verre son arête A= 60°. Un faisceau lumineux constitué par 3 rayonnements $\lambda_1 = 435 \text{ nm}$; $\lambda_2 = 546 \text{ nm}$; $\lambda_3 = 646$ nm arrive avec un angle d'incidence $i = 56^{\circ}$.

Les indices de réfraction du verre pour ces 3 rayonnements (n₁,n₂,n₃):

Q10: La relation entre n₁,n₂ et n₃:

- b) $n_3=n_2+n_1$.

 $n_3 = n_2 = n_1$.

- c) $n_3 = n_2 n_1$.
- $n_3 \neq n_2 \neq n_1$.

س11: العلاقة بين قيمة زاوية الانحراف D1 بالنسبة، للإشعاع 1 وزاوية الموشور A: Q11: La relation entre l'angle de déviation D1 pour le rayonnement 1 et l'angle A:

- $D_1 = i + i' A$.
- $D_1 = i + i' + A.$
- $A = i + i' D_1$.
- $D_1 + A = i + i'$.
- Q12: L'énergie électrique Ee emmagasinée par un condensateur durant sa charge et qui restitue durant sa décharge est :

س12: الطاقة الكهربانية Ee التي يخزنها المكثف خلال شحنه ويحررها خلال

(a) $E_e = \frac{1}{2}CU^2.$

 $E_e = \frac{1}{2} \frac{q^2}{c}.$

c) $E_e = \frac{1}{2}CU$. d) $E_e = \frac{1}{2}UC^2$.

Q13: Le temps t nécessaire pour charger un condensater (RC) à plus de 63% de la charge finale :	ar C d'un c	circuit	منة أكبر	في شاني فطب (RC) ب شد	المكثف C	س13: العدة ؛ اللازمة لكي يشمن من 13% من شمنته التهانية:
(RC) a P	~1	L-0/8		- T		
	a) b)	t=C/R. t <rc.< th=""><th></th><th>GRO</th><th>100</th><th></th></rc.<>		GRO	100	
	6	t=R/C.		des INS1	TITUTS	
	Ø	t> RC.		EXC	.EL	
014: Un condensateur se charge plus rapidement:			T			س14; يكون شعن المكثف أسرع:
a) En augmentant la valeur de R ou C.						(a) بالرفع من قيمة R أو C.
b) En diminuant la valeur de R ou C. c) En diminuant la valeur de R.						b) بتخفیض قیمة R لو C.
d) En diminuant la valeur de C.						R بتخفیض قیمهٔ (c C بتخفیض قیمهٔ (d
15: La relation entre la charge d'un condensateur et s	es hornes			· 4 d.b	تر سن ما	س15: العلاقة بين شحنة مكثف والتو
	es bornes .					
	a	$q_A = C$	U _{AB} -			
b) $q_A = CU_B$						
		$q_B = C$				
	9	$q_B = -C$	UAB.			
216 : L'énergie électrique Em emmagasinée dans une bobine L est :				ىة L هي:	نها الوشي	160: الطاقة الكهربانية Em التي تخز
		$E_m = \frac{1}{2}$	LC^2 .			
		$E_m = \frac{1}{2}$				
	9	-m	* * * * * *			
	c)	$E_m = \frac{1}{2}$	LU".			
	d)	$E_m = \frac{1}{2}$	$\frac{1}{2}CU^2$.			
17 : Les oscillations libres d'un circuit RLC possédan	t une faibl	le		ا ضعيفة:	R مقومته	1: تكون التبدد بات الحرة لدرة LC
sistance sont :						a) مخمدة. b) شبه دورية.
a) Amorties.						c جيبية. (c
b) Pseudopériodiques.						d) لادورية.
c) Sinusoïdales.d) Apériodiques.						
18,19,20 : Lorsque l'état d'énergie d'un atome passe	de l'état E	l ₂ à l'état	:.E ₁	مستوى E2 إلى المستوى	ي لدرة، من	1،19،19: عندما ينتقل مستوى طاقم 1: فإن طاقة الفوتون المنبعث E:
						$.E = E_2 - E_1 \textcircled{a}$
18: L'énergie E du photon émis:						$E = E_1 + E_2$ (b
a) $E = E_2 - E_1$.						c ددتها KeV و ددتها c
 b) E= E₂+ E₁. c) Est exprimée en KeV. 						d) وحدتها الجول.
- · · · · · · · · · · · · · · · · · · ·						
d) Est exprimée en Joule. 9: La longueur d'onde du rayonnement λ émis:						: طول الموجة لإشعاع لم المنبعث :
a) $\lambda = h(E_2 - E_1)$.						$\lambda = h(E_2 - E_1) (a)$
hc						$\lambda = \frac{hc}{E_2 - E_1} \bigcirc$
b) $\lambda = \frac{nc}{E_2 - E_1}.$) وحدتها الجول.
c) Est exprimée en Joule.) وحدتها nm.
d) Est exprimée en nm.					وث ،	المجال الذي ينتمي اليه لإشعاع المن
): Le domaine du spectre d'énergie auquel apparti	ient le ray	onnemen	ıt) مجال الأشعة السينية.
S:) تحت الأحمر.
a) Domaine des X.) مجال الإشعاع ٧.
b) Domaine des Infra-rouges.) فوق البنفسجي.
c) Domaine des γ.						
d) Domaine des ultra-violets.						
						ليف الانبعاث لذرة:
: Le spectre d'émission d'un atome :						يميز الذرة.
a) Continu.						متقطع
b) Caractérise l'atome.						مستمرو متقطع
c) Discontinu.						
a discontinu						
d) Continu et discontinu.						

a)
$$E_2 = -\frac{E_0}{4}$$

b)
$$E_2 = \frac{E_0}{2}$$

c)
$$E_2 = -\frac{E_0}{2}$$

d)
$$E_2 = -2 E_0$$

س 23,24,25,26: Un pendule simple constitué d'un objet ponctuel de masse وتتارجح على m وتتاريخ سوريخ m, et oscille à une distance fixe L du centre de rotation.

مسافة ثابتة ١ من محور الدوران:

Q23: Les oscillations sont considérées petites si l'angle θ:

س 23: تعتبر الذبابات صغيرة عندما تكون الزاوية θ:

- c) θ≤ 20°.
- d) $\theta \leq 2$ rad.

Q24: La période To des oscillations pour les petites déviations:

س 24: يكون دور التذبذبات To دات الوسع الصغير:

(a)
$$T_0 = 2\pi \sqrt{\frac{L}{g}}$$
.

b)
$$T_0 = 2\pi \sqrt{\frac{g}{L}}$$
.

c)
$$T_0 = 2\pi \sqrt{\frac{m}{\theta}}$$
.

d)
$$T_0 = 2\pi \sqrt{\frac{\theta}{m}}$$
.

Q25: La pulsation propre ω0 de ce pendule de petites déviations:

س 25: النبض الخاص 00 لهذا النواس البسيط دو الوسع الصغير:

a)
$$\omega_0 = 2\pi \sqrt{\frac{g}{L}}$$
.

(b)
$$\omega_0 = \sqrt{\frac{g}{L}}$$
.

d)
$$\omega_0 = 2\pi \sqrt{\frac{\theta}{L}}$$
.

Q26: L'équation différentielle du pendule:

س 26: المعادلة التفاضلية للنواس:

a)
$$\ddot{\theta} + \frac{g}{L} \dot{\theta} = 0$$
.

b)
$$\ddot{\theta} + \frac{L}{g} \theta = 0$$
.

c)
$$\ddot{\theta} + \omega_0 \dot{\theta} = 0$$
.

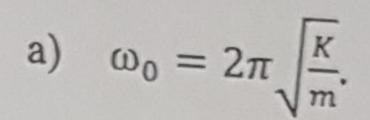
$$\ddot{\theta} + \frac{g}{L} \theta = 0.$$

27,28,29,30: Le pendule élastique est constitué d'un corps solide de masse of constitué d'un ressort à spires non jointives de raideur. L'active able. La deuxième extrémité du ressource de raideur. L'active able. La deuxième extrémité du ressource de raideur. L'active able. La deuxième extrémité du ressource de raideur. L'active able. La deuxième extrémité du ressource de raideur. L'active able. La deuxième extrémité du ressource de raideur. L'active able. 27,28,29,30: Le pende d'un ressort à spires non jointives de raideur K et de masse privé à l'extrémité d'un ressort est fixée à un corps solide de masse privé à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée à l'extrémité du ressort est fixée à un corps solide de masse privée privée privée privée privée à l'extrémité du ressort est fixée à un corps solide de masse privée pr passe négligeable. La deuxième extrémité du ressort est fixée à un support Q27: La période To des oscillations :

س 27،28،29،28، يتكون التواس المرن من جسم صلب كثلثه mمشدود من طرف نابض ذي لفات غير منصلة صلابته K وكتلة مهملة. الطرف الثاني للنابض مثبت بحامل ثابت:

س 27: يكون دور التذبذبات To:

a) $T_0 = 2\pi \sqrt{\frac{m}{\kappa}}$


b)
$$T_0 = 2 \pi K$$
.

c)
$$T_0 = 2\pi \sqrt{\frac{\kappa}{m}}$$

d)
$$T_0 = 2\pi \frac{m}{\nu}$$

O28: La pulsation propre ω0 de ce pendule:

س28: النبض الخاص ٥٥ لهذا التواس المرن:

b)
$$\omega_0 = \sqrt{\frac{m}{K}}$$
.

c)
$$\omega_0 = 2\pi T_0$$
.

$$\Theta_0 = \sqrt{\frac{K}{m}}.$$

Q29 : L'équation différentielle du pendule :

a)
$$\ddot{x} + \frac{K}{m} \dot{x} = 0$$
.

$$\ddot{x} + \omega_0^2 x = 0.$$

c)
$$\ddot{x} + \omega_0 \dot{x} = 0$$
.

$$\ddot{x} + \frac{K}{m} x = 0.$$

Q30 : La force \vec{F} exercée par le ressort :

س30: القوة F المطبقة من طرف النابض:

س 29: المعادلة التفاضلية للنواس:

a)
$$\vec{F} = -K \vec{x}$$
.

$$\vec{F} = K \vec{x}$$
.

c)
$$\vec{F} = -K^2 \vec{x}$$
.

$$\vec{E} = -\omega_0^2 \text{ m } \vec{x}.$$

Q31,32,33,34 : D'un point O situé à une hauteur de 5 m du sol, on jette une boule verticalement vers le haut avec une vitesse initiale de 4 m.s⁻¹. On donne $g=10 \text{ m.s}^{-2}$.

Q31 : L'équation horaire du mouvement de la boule dans le repère OZ,

sachant que sa chute est libre:

س31،32،32،31؛ من نقطة O ، تقع على ارتفاع m 5 من سطح الأرض، تقدف كرية رأسيا نحو الأعلى بسرعة بدنيه تساوي 1-4 m.s.

نعطى g=10 m.s⁻².

س32: الارتفاع الدي تصله الكرية:

س31: المعادلة الزمنية لحركة الكرية في المعلم OZ باعتبار سقوطها حرا:

a)
$$z = \frac{1}{2} g_z t^2 + v_{0z} t + z_0$$
.

b)
$$z = \frac{1}{2} g_z t^2 + z_0$$
.

c)
$$Z=5 t^2-4 t$$
.

d)
$$Z=5 t^2+4 t$$
.

Q32: La hauteur atteinte par la boule:

Q33: Sa vitesse v à son retour à la position O:

a)
$$H=5,8$$
 m.

c)
$$H=0.8$$
mm.

$$H = 580 \text{ cm}$$
.

س33: سرعتها عند عودتها إلى 0:

$$v = 4 \text{ m.s}^{-1}$$

b)
$$v=4 \text{ m.s}^{-2}$$

c)
$$v=0,4 \text{ m.s}^{-1}$$

d)
$$v = 40 \text{ m.s}^{-1}$$

Page 5 sur 6

Q34 : Le temps t nécessaire pour atteindre le sol :			
pour atteindre le sol :	0		إس34: العدة ع التي تستغرقها لكي تصل إلى سطح الأرض:
		t≈ 1,5 s.	
		$t \approx 2 \text{ m.s}^{-1}$. $t \approx 2 \text{ m.s}^{-2}$.	
O35.36 : La distance	d)	$t \approx 2 \text{ m.s.}$	
Q35,36: La distance parcourue par la voiture suit l'ée x(t)=2t ² +1,5 10 ⁴	quation s	uivante:	س36،35: المسافة المقطوعة من طرف سيارة تحقق المعادلة
Avec x est en mètre et t en second			
Q35: La position x de la voiture à l'instant t=0 est :			التالية: 10 ⁴ 1,5 +2t ² (x(t)=2t ² x بالمتر و t بالثانية.
The state of the s			س35: موضوع السيارة x في اللحظة 0= عو:
	a)	x=15 km.	
	6	x=15000 m. $x=1.5 \cdot 10^4 \text{ m}.$	
	(h	$v = 1.5 \cdot 10^4 \text{ km}$	
Q36 : La vitesse instantanée v après 7s de départ de la	a voiture	: 1,5 10 KIII.	س 36: قيمة سرعتها اللحظية v بعدة 75 من انطلاق السيارة:
	a	$v = 28 \text{ m.s}^{-1}$.	
	b)	v = 20 m.s. $v \approx 101 \text{ km.h}^{-1}$.	
	c)	v≈ 120 km.	
	d)	$v\approx 2 \text{ m.s}^{-1}$.	
Q37,38,39 : La désintégration du noyau de radium 22	26 Ra en		س37،38،37: تتفتت نويدة الراديوم 226 Ra لتعطي نويدة الرادون ARn مع
Emission α . La période du $^{226}_{88}Ra$ est T=1620 a.			انبعاث م. عمر النصف لنويدة الراديوم 226 Ra هو T=1620 a هو T=1620 عمر النصف لنويدة الراديوم
237 : L'équation de désintégration :			س37: المعادلة الحصيلة لهذا التفتت:
a)		$\rightarrow {}^{226}_{86}Rn + \alpha$	
b)		$\rightarrow {}^{226}_{88}Rn + {}^{4}_{2}H$	
6		$\rightarrow {}^{222}_{86}Rn + {}^{4}_{2}H$	
d)	00	$> {}^{222}_{86}Rn +$	
38: La constate de désintégration λ du ²²⁶ ₈₈ Ra est	égale :		س38: ثابتة الإشعاعية لـ 226 Ra تساوي:
		a $\lambda = 4,25 \cdot 10^{-4}$	a ⁻¹ .
		b) $\lambda = 4,25$ a.	
		c) $\lambda = \frac{T}{\ln 2}$.	
		d) $\lambda = \frac{2\pi}{T}$.	
39 : Le temps t nécessaire pour la désintégration d	le 75% :		99: المدة الزمنية t اللازمة لتفتت % 75:
Po checessaire pour la desintegration e			
		a) t=810 a.	
		b) t=1215a.	
		c) t=1610 a.	
		d) t=3220a.	ا: نوع النشاط الإشعاعي الذي تتحول به نويدة ع 30 الى نويدة ع 90 هو:
40: Le type de transformation radioactive du noy Y est:	yau 38S1	en noyau	: 34 391 - 382.
		6) B.	
		b) 00	
		0) -10.	
		c) p.	
		d) γ.	
	16	GRO	LIPE