

Concours d'accès aux licences professionnelles Sage-Femme & Sciences Infirmières Epreuve de Mathématique

QCM 1: Soient (u_n) , (v_n) et (w_n) trois suites telles que :

- $\bullet \quad v_n \leq u_n \leq w_n \text{ , pour tout entier } n$
- $\lim_{n\to\infty} v_n = 0$, $\lim_{n\to\infty} w_n = 1$

	Vrai	Faux
$\lim_{n\to\infty}u_n=0$		
(u _n) est minorée		
(u _n) est majorée par 1		
Si $\lim_{n\to\infty} u_n = a$, on $a: 0 \le a \le 1$		

QCM 2: Soit (u_n) une suite telle que :

- $u_0 = 2$
- $\bullet \quad u_{n+1} = 2u_n 1$

Alors:

	Vrai	Faux
$\lim_{n\to\infty}u_n=1$		
$\lim_{n\to\infty} u_n^{=} + \infty$		
La suite définie par $v_n = u_n - 1$ est géométrique de raison 2		
$u_n = 2^n + 1$, pour tout entier n		

QCM 3: Soit (u_n) une suite telle que:

- $u_0 = -1$
- (u_n) est croissante
- $(-u_n)$ est minorée par -4

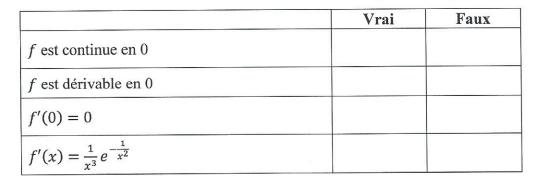
Alors:

	Vrai	Faux
$\lim_{n\to\infty} u_n$ existe		
(u_n) est minorée par -1		
(u_n) est majorée par 4		
$\lim_{n\to\infty}u_n=4$		

QCM 4: On définit la fonction f par

- $f(x) = e^{-\frac{1}{x^2}}, x \neq 0$
- f(0) = 0,

Alors:



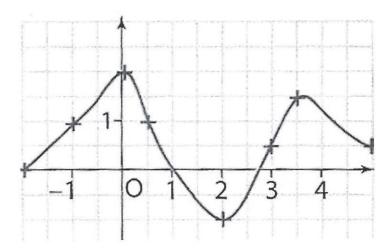
QCM 5: Soit f une fonction définie sur [-1,1] et telle que :

- f est strictement décroissante
- $f(-1) \times f(1) < 0$,

Alors:

	Vrai	Faux
f(-1) < 0, f(1) > 0		
$f(-1) \ge 0, f(1) \le 0$		
f s'annule sur]-1,1[
f'(0) < 0		

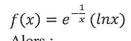
 \mathbf{QCM} 6 : Soit f une fonction dérivable dont la courbe représentative est de la forme :



Alors:

	Vrai	Faux
f est définie et continue sur [-2,5]		
f' est négative sur [0,2]		
L'équation de la tangente au point d'abscisse 0 est $y = 0$		
f'(3) > 0		

QCM 7: Soit f une fonction définie par :



	Vrai	Faux
]0, $+\infty$ [est le domaine de définition de f		
$\lim_{x \to 0^+} f(x) = 0$		
$\lim_{x \to +\infty} f(x) = 0$		
$f'(x) = \frac{1}{x^2}(x + \ln x)f(x)$		

QCM 8: Soit le polynôme complexe : $P(z) = 2z^3 - iz^2 + 3z + i - 5$

Alors:

	Vrai	Faux
1 est racine du polynôme P		
$P(z) = (z - 1)(2z^2 + (2 - i)z + i - 5)$		
Si $z \in \mathbb{R}$, alors $P(z) \in \mathbb{R}$		
$P(-1) \in \mathbb{R}$		

QCM 9 : Soit P une probabilité, A et B deux événements, alors

	Vrai	Faux
$P(A \cup B) = P(A) + P(B)$		
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$		
$(A \cup B) = P(A) - P(B) + P(A \cap B)$		
$P(A \cup B) = P(A)P(B)$		

