

Université Hassan 1er Institut Supérieur des Sciences de la Santé Settat

Concours d'accès en 1ère année de la licence professionnelle SI-SF Epreuve de physique

Réservé	à	l'administration
N°:		

SEX CEL

Remarques importantes:

- Veuillez répondre sur la feuille du concours.
- Parmi les réponses proposées, il n γ'a qu'une seule qui est juste.
- Cochez la case qui correspond à la réponse correcte sur la feuille du concours et assurez-vous que les trois autres cases sont vides
- Réponse juste = +2 points, Réponse fausse = -1 point, Pas de réponse = 0 point
- Plus qu'une case cochée pour une question = -1 point
- Aucune documentation n'est autorisée.
- L'utilisation des téléphones portables est strictement interdite.

Questions directes:

1. L'énergie électrique emmagasiné par un condensateur de capacité C et de charge q est :

A.
$$\Box$$
 $E_e = \frac{1}{2} \frac{C}{q}$

B.
$$\Box$$
 $E_e = \frac{1}{2} \frac{q}{c}$

C.
$$\Box \qquad E_e = \frac{1}{2} \frac{q^2}{C}$$

D.
$$\Box$$
 $E_e = \frac{1}{2} \frac{C^2}{q}$

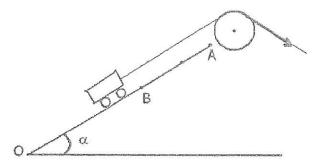
- 2. Le spectre [620nm 750nm] correspond t-il à la couleur :
- A.

 Rouge
- B. 🗀 Jaune
- C. D Vert
- D. 🗆 Bleu
- 3. L'indice de réfraction d'un milieu :
- A. □ Se mesure en mètres
- B.

 Est plus grand pour l'air que pour l'eau
- C. Dépend de la longueur d'onde de la radiation qui se propage dans le milieu
- D.

 Est une grandeur algébrique

Université Hassan 1^{er} Institut Supérieur des Sciences de la Santé Settat


4. Le moment d'inertie d'une sphère de rayon r et de masse m est :

A.
$$\Box$$
 $J_{\Delta} = \frac{1}{2}mr^2$

B.
$$\Box$$
 $J_{\Delta} = \frac{2}{3}mr^2$

C.
$$\Box$$
 $J_{\Delta} = \frac{3}{4}mr^2$

Exercice 1:

On néglige les frottements et on prend g= 9.8 m.s^{-2} . On tire un chariot avec un fil non extensible et ayant une masse nulle, autour d'un cylindre de masse m_c = 250 g et de rayon r=6 cm.

Le cylindre tourne autour de son axe horizontal à l'aide d'un moteur appliquant un couple de moment fixe \mathcal{M} .

Le chariot se trouve sur un plan incliné par un angle α =30° et de longueur OA= 2 m. La masse du chariot est $\,$ m $_s$ = 400 g.

1. l'intensité de la force de tirage pour donner au chariot une accélération a= 5 m.s⁻² est égale à :

2. L'équation temporelle du mouvement du centre d'inertie G du chariot, sachant que sa vitesse initiale est nulle, est :

C.
$$\Box$$
 x=0,25 t²

D.
$$\Box$$
 x=1,5 t²

3. Le moment d'inertie du cylindre est :

C.
$$\Box$$
 5,4.10⁻⁴ Kg.m²

4. Le moment $\mathcal M$ du couple moteur est égal à :

Université Hassan 1^{er} Institut Supérieur des Sciences de la Santé Settat

Exercice 2:

Les médicaments à base d'aspirine se présentent sous diverses formulations : comprimés, poudre, comprimés effervescents, etc.

On dissout un comprimé contenant 500mg d'aspirine dans de l'eau distillée de façon à obtenir un volume de 200 ml de solution. L'acide acétylsalicylique AH réagit avec l'eau pour donner un ion acétylsalicylate A⁻.

Masse molaire de l'acide acétylsalicylique: M= 180 g.mol⁻¹.

1. L'équation de la réaction modélisant la transformation est :

A. L. $AH + H_2O = A^- + H_3O^+$

B. \Box AH + H₂O = A⁻ + H₃O⁺ + OH⁻

C. \Box 2 AH + H₂O = 2A⁻ + H₃O⁺ + OH⁺

2. La concentration molaire en soluté apporté est :

A. \Box $C = 2.5 \cdot 10^{-2} \text{ g/l}$

B. \Box C = 2.5 10⁻² 1/mol

C. $C = 1.4 \cdot 10^{-2} \text{ l/mol}$

