

I.S.E.M

ROYAUME DU MAROC

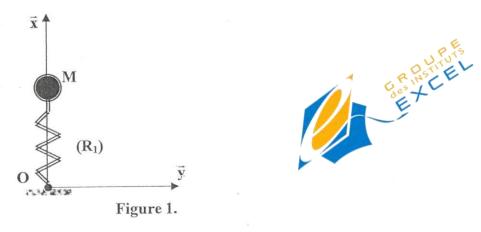
MINISTERE DE L'EQUIPEMENT, DU TRANSPORT ET DE LA LOGISTIQUE

INSTITUT SUPERIEUR D'ETUDES MARITIMES

Concours d'accès en 1ère année du cycle normal (2015/2016) Epreuve de Physique, durée 1h30

Exercice I

Dans le plan vertical (O,\vec{x},\vec{y}) , on dispose d'un ressort (R_I) à spires non jointives, de masse négligeable, de longueur à vide $l_0 = 10$ cm et de raideur k = 20 N.m⁻¹. Le ressort est enfilé sur une tige verticale, l'extrémité M est fixée à un solide (S), l'autre extrémité est soudée en O. Le solide (S), assimilé à un point matériel de masse m = 20 g peut glisser sans frottement sur la tige verticale (figure 1). La position de (S) par rapport à O est notée x(t). On donne $g=10 \text{ m.s}^{-2}$.



Question 1: On considère que le solide (S) est au repos. Déterminer dans ce cas la position d'équilibre, Xe de (S).

Réponses $A: X_e = 5 \text{ cm}$

 $B: X_e = 8 \text{ cm}$

 $C: X_e = 9 \text{ cm}$

On écarte le solide (S) de 1 cm de sa position d'équilibre dans le sens positif de l'axe Ox puis on le lâche sans vitesse.

Question 2: Appliquer le principe fondamental de la dynamique au solide (S). En déduire l'équation différentielle du mouvement.

Réponses

 $A : \frac{d^2x}{dt^2} + \frac{k}{m}x = \frac{k}{m}l_o - g \qquad B : \frac{d^2x}{dt^2} - \frac{k}{m}x = \frac{k}{m}l_o - g \qquad C : \frac{d^2x}{dt^2} + \frac{m}{k}x = \frac{m}{k}l_o - g$

Question 3: Effectuer le changement de variable $x = X(t) + x_e$ sur l'équation différentielle obtenue dans la question précédente.

Réponses

A: $\frac{d^2X}{dt^2} + \frac{k}{m}X = 0$ B: $\frac{d^2X}{dt^2} - \frac{k}{m}X = 0$

 $C: \frac{d^2X}{dt^2} + \frac{m}{k}X = 0$

Question 4 : Donner la solution X(t). Calculer la fréquence ainsi que la période du mouvement.

Réponse A :
$$X(t) = 10^{-3} \cos(10\sqrt{10} t)$$
 Période = $\frac{\pi}{5\sqrt{10}} S$

Période =
$$\frac{\pi}{5\sqrt{10}}$$
 S

$$Fr\'{e}quence = 10\sqrt{10}s^{-1}$$

Réponse B :
$$X(t) = 10^{-2} \cos(10^{-1}\sqrt{10^{-1}}t)$$
 Période = $\frac{2 \pi}{10^{-1}\sqrt{10^{-1}}}S$ Fréquence = $10^{-1}\sqrt{10^{-1}}s^{-1}$

Période =
$$\frac{2 \pi}{10^{-1} \sqrt{10^{-1}}} S$$

Fréquence =
$$10^{-1}\sqrt{10^{-1}}$$
s⁻¹

Réponse C:
$$X(t) = 10^{-2} \cos(10\sqrt{10} t)$$
 Période = $\frac{\pi}{5\sqrt{10}} S$

Période =
$$\frac{\pi}{5\sqrt{10}}$$
 S

Fréquence =
$$10\sqrt{10}$$
 s⁻¹

Question 5: Calculer la vitesse du solide (S) lors de son deuxième passage par la position d'équilibre.

$$A: 10^{-1}\sqrt{10} \text{ m/s}$$

$$B:10\sqrt{10} \text{ m/s}$$

$$C:10^{-1}\sqrt{10^{-1}} \text{ m/s}$$

Question 6 : Calculer l'accélération du solide (S) lors de son deuxième passage par la position d'équilibre.

$$A: \sqrt{10} \text{ m.s}^{-2}$$

$$C: \sqrt{10^{-1}} \text{ m. s}^{-2}$$

Le solide (S) est soumis à une force verticale permettant d'entretenir un mouvement IIpériodique vertical. Cette force est donnée sous la forme : $F = F_0 \cos(\Omega t)$

Question 7 : Etablir l'équation différentielle, en X(t), qui régit le mouvement oscillatoire forcé par rapport à l'équilibre.

Réponses

$$A: \frac{d^2X}{dt^2} + \frac{m}{k}X = \frac{Fo}{k}\cos(\Omega t)$$

$$B: \frac{d^2X}{dt^2} - \frac{k}{m}X = Fo\cos(\Omega t)$$

$$A: \frac{d^2X}{dt^2} + \frac{m}{k}X = \frac{Fo}{k}\cos(\Omega t) \qquad B: \frac{d^2X}{dt^2} - \frac{k}{m}X = Fo\cos(\Omega t) \qquad C: \frac{d^2X}{dt^2} + \frac{k}{m}X = \frac{Fo}{m}\cos(\Omega t)$$

Question 8 : La solution de l'équation différentielle obtenue dans la question 7 est cherchée en régime permanent sous la forme $A \cos(\Omega t + \phi)$. Déterminer l'amplitude du mouvement, A, ainsi que la phase ϕ .

Réponses

A:
$$A = \frac{\frac{F_0}{k}}{\frac{k}{m} - \Omega^2}, \phi = \pi$$

$$B: A = \frac{\frac{Fo}{k}}{\frac{k}{m} - \Omega^2}, \phi = 0$$

$$C: A = \frac{rac{Fo}{m}}{rac{k}{m} - \Omega^2}, \phi = 0$$

 $\underline{Question\ 9}: Donner\ une\ explication\ physique\ du\ le\ résultat\ obtenu\ pour\ la\ phase\ \phi.$

A: Ce résultat est dû à l'absence de frottement

B: Ce résultat est dû à la raideur du ressort

C: Ce résultat est dû à l'entretien du mouvement périodique.

Question 10 : Pour quelle valeur de Ω , l'amplitude du mouvement peut-elle être infinie ?

Réponses : A:
$$\Omega = \frac{k}{m}$$
,

A:
$$\Omega = \frac{k}{m}$$
,

B:
$$\Omega = \sqrt{\frac{k}{m'}}$$

$$C: \Omega = \sqrt{\frac{m}{k}},$$

