Correction de l'examen national session normal 2021 SYT BIOF

Chimie

Partie *I*:

1-Les quantités de matières $n_0(Zn)$ et $n_0(H_3O^+)$:

$$\begin{split} n_0(Zn) = \frac{m(Zn)}{M(Zn)} & \Longrightarrow n_0(Zn) = \frac{1.0}{65.4} = 1.5.10^{-2} \text{ mol} \\ n_0(H_3O^+) = C_A.V & \Longrightarrow n_0(H_3O^+) = 0.5 \times 40.10^{-3} = 2.10^{-2} \text{ mol} \end{split}$$

2-Le tableau d'avancement :

Équation chimique		$2H_3O_{(aq)}^+ + Zn_{(s)} \longrightarrow H_{2(g)} + Zn_{(aq)}^{2+} + 2H_2O_{(l)}$				
État du système	Avancement (mol)	Quantités de matière (mol)				
État initial	x = 0	2.10 ⁻²	1,5.10 ⁻²	0	0	excès
État intermédiaire	X	2.10 ⁻² -2x	1,5.10 ² -x	×	x	excès
État final	x_f	2.10 ⁻² -2x _f	,5.10 ⁻² × _f	× _f	x _f	excès

3-Identification du réactif limitant

Le réactif limitant est celui qui met fin à la réaction.

Si
$$H_30^+$$
 est le réactif limitant : $2.10^{-2} - 2x_{max1} = 0 \implies x_{max1} = \frac{2.10^{-2}}{2} = 10^{-2}$ mol

Si Zn est le réactif limitant :
$$1,5.10^{-2} - x_{max2} = 0 \implies x_{max2} = 1,5.10^{-2}$$
 mol

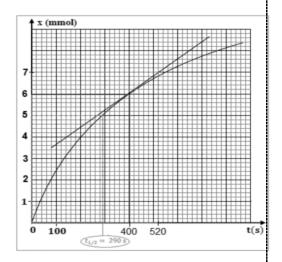
Le réactif limitant est celui utilisé par défaut, donc c'est H₃0⁺ et

$$x_{\text{max}} = 10^{-2} \text{ mol}$$

4-a- La valeur de $t_{1/2}$:

A
$$t = t_{1/2}$$
, on a: $x(t_{1/2}) = \frac{x_{\text{max}}}{2}$

$$x(t_{1/2}) = \frac{10^{-2}}{2} = 5.10^{-3} \text{ mol} = 5 \text{ mmol}$$


$$t_{1/2} = 290 s$$

4-b- La valeur de la vitesse volumique à t = 400s:

$$V = \frac{1}{V} \cdot \frac{dx}{dt}$$

$$V = \frac{1}{V} \cdot \left(\frac{\Delta x}{\Delta t}\right)_{t=400 \text{ s}} = \frac{1}{40.10^{-3} L} \times \left[\frac{(6-7).10^{-3} mol}{(400-520)\text{s}}\right]$$

$$V = 2,08.10^{-4} \text{ mol. } L^{-1}. s^{-1}$$

5-Interprétation de la variation de la vitesse :

La vitesse de la réaction diminue au cours de la réaction à cause de la diminution des concentrations des réactifs.

6-1-Le facteur cinétique :

L'augmentation de la concentration initiale de l'un des réactifs.

6-2- La valeur de $t_{1/2}$ va-t-il augmenter ou diminuer ?

Plus les concentrations initiales des réactifs sont élevées, plus que le temps de réaction est court est par conséquent le temps de demi-réaction va diminuer.

Partie II:

1-L'équation de la réaction :

$$C_2H_5CO_2H_{(aq)} + H_2O_{(l)} \rightleftarrows C_2H_5CO_{2(aq)}^- + H_3O_{(aq)}^+$$

2-Le taux d'avancement τ :

Le tableau d'avancement :

Equation de la réaction		C ₂ H ₅ CO ₂ H _(aq)	+ H ₂ O _(l)	$C_2H_5CO_2^-$ (aa)	$+ H_3O^{+}_{(aq)}$
Etats	Avancement	Quantité de matière en (mol)			
Etat initial	0	C. V	En excès	□ □ □ □	0
Etat intermédiaire	x	$\mathbf{C.V} - \mathbf{x}$	En excès	VXI S	х
Etat final	x_f	$\mathbf{C.V} - \mathbf{x_f}$	En excès	x_f	x_f

D'après le tableau d'avancement : $n_f(H_3O^+) = x_f \Rightarrow [H_3O^+]_{\acute{e}q} = \frac{x_f}{V} \Rightarrow x_f = [H_3O^+]_{\acute{e}q}$. V

Le réactif limitant est l'acide : C. V $-x_{max} = 0 \Rightarrow x_{max} = C.$ V

L'expression de taux d'avancement final : $\tau = \frac{x_f}{x_{max}} = \frac{[H_3 O^+]_{\acute{eq}} \cdot V}{C \cdot V} = \frac{[H_3 O^+]_{\acute{eq}}}{C}$

$$\tau = \frac{10^{-pH}}{C}$$

$$\tau = \frac{10^{-3.79}}{2.10^{-3}} \approx 0.081 \implies \tau = 8.1 \%$$

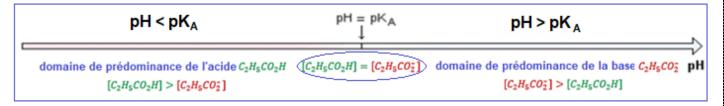
Puisque $\tau < 1$ la réaction est limitée (non totale).

3-L'expression de K_{A_1} :

D'après le tableau d'avancement :

$$\begin{split} n_f(H_3O^+) &= n_f(C_2H_5CO_2^-) = x_f \Rightarrow [H_3O^+]_{\acute{e}q} = [C_2H_5CO_2^-]_{\acute{e}q} = \frac{x_f}{V} \\ [H_3O^+]_{\acute{e}q} &= [C_2H_5CO_2^-]_{\acute{e}q} = 10^{-pH} \\ n_f(C_2H_5CO_2H) &= C.V - x_{\acute{e}q} \Rightarrow [C_2H_5CO_2H]_{\acute{e}q} = \frac{C.V - x_{\acute{e}q}}{V} = C - \frac{x_f}{V} \end{split}$$

$$[C_3H_6O_3]_{\acute{e}\alpha} = C - 10^{-pH}$$


L'expression de la constante d'acidité :

$$K_{A_1} = \frac{[H_3O^+]_{\acute{eq}} \cdot [C_2H_5CO_2^-]_{\acute{eq}}}{[C_2H_5CO_2H]_{\acute{eq}}} = \frac{[H_3O^+]_{\acute{eq}}^2}{[C_2H_5CO_2H]_{\acute{eq}}} = \frac{(10^{-pH})^2}{C - 10^{-pH}} \Rightarrow K_{A_1} = \frac{10^{-2pH}}{C - 10^{-pH}}$$

A.N:

$$K_{A_1} = \frac{10^{-2 \times 3,79}}{2.10^{-3} - 10^{-3,79}} \approx 1,43.10^{-5}$$

4-Le diagramme de prédominance :

5-1-L'équation de la réaction :

$$C_2H_5CO_2H_{(aq)} + C_6H_5CO_{2(aq)}^- \rightleftharpoons C_2H_5CO_{2(aq)}^- + C_6H_5CO_2H_{(aq)}$$

5-2-La proposition vraie: C

$$K = \frac{[C_2H_5CO_2^-]_{\acute{eq}} \cdot [C_6H_5CO_2H]_{\acute{eq}}}{[C_2H_5CO_2H]_{\acute{eq}} \cdot [C_6H_5CO_2^-]_{\acute{eq}}} \cdot \frac{[H_3O^+]_{\acute{eq}}}{[H_3O^+]_{\acute{eq}}}$$

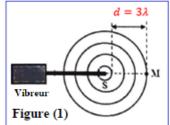
$$K = \frac{[H_3O^+]_{\acute{eq}} \cdot [C_2H_5CO_2^-]_{\acute{eq}}}{[C_2H_5CO_2H]_{\acute{eq}}} \cdot \frac{[C_6H_5CO_2H]_{\acute{eq}}}{[H_3O^+]_{\acute{eq}} \cdot [C_6H_5CO_2^-]_{\acute{eq}}} = \frac{K_{A_1}}{K_{A_2}}$$

$$K = \frac{K_{A_1}}{K_{A_2}} \implies K_{A_2} = \frac{K_{A_1}}{K}$$

5-3-Calcul de K_{A_2} :

A.N:

$$K_{A_2} = \frac{1,43.10^{-5}}{0,23} = 6,22.10^{-5}$$


Physique (13 points)

Exercice 1 : Propagation des ondes à la surface de l'eau

1-Définition d'une onde mécanique progressive :

Une onde progressive est une série d'ébranlements identiques résultant d'une vibration entretenue de la source des ondes.

2.1-La valeur de λ : C

D'après la figure 1, on a : $d = 3\lambda \implies \lambda = \frac{d}{3} \implies \lambda = \frac{15}{3} = 5 \text{ mm}$

2.2-La valeur de V: C

On a: $V = \lambda$. $N \implies V = 5.10^{-3} \times 50 = 0.25 \text{ m. s}^{-1}$

2.3-L'élongation $y_M(t)$ en fonction de $Y_S(t)$: A

Calculons le retard temporel du point M par rapport au point S est :

$$\tau = \frac{SM}{V} \Longrightarrow \tau = \frac{17,5.10^{-3}}{0,5} = 0,07 \text{ s}$$

$$y_M = y_S(t - \tau) \Longrightarrow y_M = y_S(t - 0.07)$$

3-L'eau est-il un milieu dispersif?

Calculons la vitesse de célérité à la fréquence $N': V' = \lambda' . N'$

$$V' = 3.10^{-3} \text{m} \times 100 \text{ Hz} = 0.3 \text{ m. s}^{-1}$$

La célérité de propagation de l'onde dépend de sa fréquence, par conséquence l'eau est un milieu dispersif.

Fréquence N (Hz)	50	100	
La célérité de l'onde V (m. s ⁻¹)	0,25	0,3	

4.1-Le nom du phénomène :

La largeur de l'ouverture a est inférieure à la longueur d'onde λ ($a=4,5~mm<\lambda=5~mm$) le phénomène qui se produit s'appelle diffraction.

4.2- La proposition vraie : D

Au cours du phénomène de diffraction, les deux ondes incidente et diffractée ont même fréquence et même vitesse de propagation ($\lambda = 5 \text{mm}$; V = 0.25 m/s).

Exercice 2 : Médecine nucléaire

1-Production du technétium ⁹⁹Tc*:

1.1- Le type de désintégration :

L'équation de désintégration : $^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc}^* + ^{A}_{Z}\text{X}$

Loi de conservation de Soddy:

$$\begin{cases} 99 = 99 + A \\ 42 = 43 + Z \end{cases} \Rightarrow \begin{cases} A = 0 \\ Z = -1 \end{cases} \Rightarrow {}_{Z}^{A}X = {}_{-1}^{0}e$$

Type de désintégration : radioactivité β^- .

$$^{99}_{42}\text{Mo} \rightarrow ^{99}_{43}\text{Tc}^* + ^{0}_{-1}\text{e}$$

1.2-La valeur de E_{libérée}:

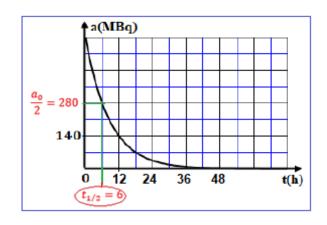
$$E_{lib\acute{e}r\acute{e}\acute{e}} = |\Delta E|$$

$$\Delta E = [m(Tc) + m(e) - m(Mo)].c^{2}$$

$$\Delta E = [98,882 + 5,486.10^{-4} - 98,884]u. c^2 = -1,4514.10^{-3} \times 931,5 \text{ MeV. } c^{-2}. c^2 = -1,3520 \text{ MeV}$$

$$E_{lib\acute{e}r\acute{e}\acute{e}} = |\Delta E| = 1,352 \text{ MeV}$$

2.1-Détermination graphique de $t_{1/2}$:


A l'instant $t = t_{1/2}$ on a :

$$a(t_{1/2}) = \frac{a_0}{2} = \frac{4 \times 140}{2} = 280 \text{ MBq}$$

On trouve d'après le graphe : $t_{1/2} = 6 h$

2.2-La valeur de λ : A

$$\lambda = \frac{\ln 2}{t_{1/2}} \implies \lambda = \frac{\ln 2}{6} = 0.1155 \text{ h}^{-1}$$

2.3-La valeur de N : A

$$\begin{split} N &= N_0 e^{-\lambda.t} = \frac{a_0}{\lambda}. \, e^{-\lambda.t} = \frac{a_0}{\ln 2}. \, t_{1/2}. \, e^{-\lambda.t} \\ N &= \frac{4 \times 140. \, 10^6}{\ln 2} \times 6 \times 3600 \times e^{-0.1155 \times 3} = 1.23. 10^{13} \end{split}$$

2.4-Est-il possible de refaire le même examen après 48 h :

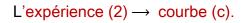
D'après le graphe ci-contre La valeur de l'activité est nulle a=0 à $t=48\,\mathrm{h}$, donc on ne peut pas faire le même examen $\left(N(t)=\frac{a(t)}{\lambda}\right)$.

Exercice 3 (6,5 points) Décharge d'un condensateur :

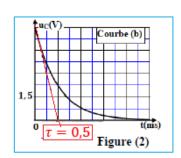
1-Vérifions de la valeur de C:

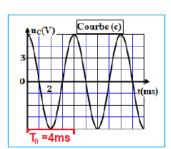
A
$$t_0 = 0$$
 on a:

$$Q_0 = C.E \implies C = \frac{Q_0}{E}$$

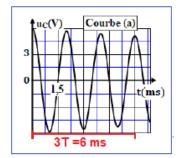

A.N:

$$C = \frac{3 \mu C}{6} = 0.5 \mu F$$


2-1-Assiciation de chaque courbe à l'expérience qui lui correspond :


L'expérience (1) \rightarrow courbe (b).

Le condensateur se décharge dans un conducteur ohmique : la tension \mathbf{u}_{C} aux bornes du condensateur diminue pour s'annuler en régime permanent


Le condensateur se décharge dans une bobine b₁ de résistance nulle, on obtient des oscillations libres et non amorties.

L'expérience (3) \rightarrow courbe (a).

Le condensateur se décharge dans une bobine b₂ de résistance non nulle, on obtient des oscillations libres et amorties.

2.2-La valeur de τ :

Graphiquement (courbe (b)) on trouve : T = 0.5 ms

Détermination de R :

$$\tau = RC \implies R = \frac{\tau}{C}$$

A.N:
$$R = \frac{_{0,5\times 10^{-3}}}{_{0,5.10^{-6}}} = 10^3 \; \Omega \quad \Longrightarrow R = 1 \; \mathrm{k}\Omega$$

2.3-Le cas de l'expérience (3) :

a- Le nom du régime d'oscillation :

Régime pseudopériodique

b-Explication de l'allure de la courbe de point de vue énergétique :

L'énergie totale du circuit décroit en fonction du temps et les oscillations sont amorties à cause de la perte de l'énergie par effet joule au niveau de la résistance de la bobine b₂.

c-La valeur de la pseudo-période :

Graphiquement (voir figure (a)) on trouve : $T = \frac{6 \text{ ms}}{3} = 2 \text{ ms}$

3-Le cas de l'expérience (2) :

3.1-La valeur de la période propre T_0 :

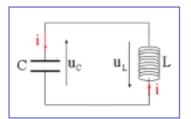
Voir courbe (c): $T_0 = 4 \text{ ms}$

3.2-La valeur de L_1 :

L'expression de la période propre :

$$T_0 = 2\pi\sqrt{L_1.C}$$

$$T_0^2 = 4\pi^2 L_1.C \implies \boxed{L_1 = \frac{T_0^2}{4\pi^2 C}}$$


On a :
$$T = T_0 = 4.10^{-3} \text{ s}$$

$$L_1 = \frac{(4 \times 10^{-3})^2}{4 \times \pi^2 \times 0.5.10^{-6}} = 2,5.10^{-6} \text{ F} \implies \boxed{L_1 = 0,81 \text{ H}}$$

3.3-L'équation différentielle :

D'après la loi d'additivité des tensions : $u_{\text{C}} + u_{\text{L}_1} = 0$

$$\begin{split} L_1.\frac{di}{dt} + u_C &= 0 \\ u_C &= \frac{q}{c} : \varrho \dot{q} = C. \, u_C \quad \varrho \quad \frac{di}{dt} = \frac{d}{dt} \left(\frac{dq}{dt}\right) = \frac{d^2q}{dt^2} \, \varrho \quad i = \frac{dq}{dt} \\ L_1.\frac{d^2q}{dt^2} + \frac{1}{C}. \, q &= 0 \\ \frac{d^2q}{dt^2} + \frac{1}{L_1.C}. \, q &= 0 \end{split}$$

3.4-a- L'expression numérique de la charge : A

D'après la courbe (c) :

$$\begin{split} u_C(t) &= E \cos\left(\frac{2\pi}{T_0}.\,t\right) = 6\cos\left(\frac{2\pi}{4.10^{-3}}.\,t\right) = 6\cos(500\pi t) \\ q(t) &= C.\,u_C(t) = 6\times0.5.10^{-6}\cos(500\pi t) = 3.10^{-6}\cos(500\pi t) \end{split}$$

3.4-b- La valeur de I_{max}: D

$$i(t) = \frac{dq}{dt} = -3.10^{-6} \times 500 \text{ m} \sin(500\pi t) = -4,71.10^{-3} \sin(500\pi t)$$

$$I_m = 4,71 \text{ mA}$$

3.5-Explication de la conservation de l'énergie totale du circuit :

La transformation d'énergie électrique en énergie magnétique et inversement se fait sans dissipation de l'énergie par effet joule. L'énergie totale du circuit se conserve (car la résistance est nulle).

3.6-La valeur de l'énergie totale du circuit :

L'énergie totale du circuit LC est égale à l'énergie initiale emmagasinée dans le condensateur.

$$\xi = E_e + E_m = \frac{1}{2}C.E^2$$

 $\xi = \frac{1}{2} \times 0.5.10^{-6} \times 6^2 = 9.10^{-6} J$

3.7-la valeur de |q|:

$$\begin{cases} \xi = E_e + E_m \\ E_e = E_m \end{cases} \Rightarrow \xi = 2E_e = 2 \times \frac{1}{2C} \cdot q^2 = \frac{q^2}{C}$$

$$q^2 = \xi \cdot C$$

$$|q| = \sqrt{\xi \cdot C} \Rightarrow |q| = \sqrt{9 \cdot 10^{-6} \times 0.5 \cdot 10^{-6}} = 2.12 \cdot 10^{-6} \cdot C$$

$$|q| = 2.12 \, \mu C$$