تصحيح وطني 2020 الدورة العادية - علوم تجريبية

التمرين الأول (4 نقاط)

$$\mathbb N$$
 المتتالية العددية المعرفة كما يلي : $u_0 = \frac{3}{2}$ و $u_{n+1} = \frac{2u_n}{2u_n+5}$ لكل u_n من

 u_1 أحسب (1 0.25

0.75

0.5

1

0.75

- $u_n > 0$ ، \mathbb{N} من n من الترجع أن لكل بين بالترجع أن 0.5
- \mathbb{N} من n من $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ نم استنتج أن $0 < u_{n+1} \le \frac{2}{5} u_n$ ککل الکل (3) الکل بین أن 1
 - ب) أحسب النهاية بين النهاية بين النهاية بين النهاية بين النهاية التين النهاية التين النهاية التين الت 0.5
 - \mathbb{N} من $v_n = \frac{4u_n}{2u_1 + 3}$ نعتبر (v_n) المتتالية العددية المعرفة ب
 - $\frac{2}{z}$ أ) بين أن (v_n) متتالية هندسية أساسها
 - $\mathbb N$ ب بدلالة n ثم استنتج u_n بدلالة v_n لكل v_n من

التمرين الثاني (5 نقاط)

- (E) : $z^2 2(\sqrt{2} + \sqrt{6})z + 16 = 0$: نعتبر في مجموعة الأعداد العقدية C المعادلة (1)
 - $\Delta = -4 \sqrt{6} \sqrt{2}^2$: هو (E) أي تحقق من أن مميز المعادلة
 - ب) استنتج حلى المعادلة (E)
- $c=\sqrt{2}+i\sqrt{2}$ و $b=1+i\sqrt{3}$ و $a=\sqrt{6}+\sqrt{2}+i\sqrt{6}-\sqrt{2}$: نعتبر الأعداد العقدية (2

 - ac=4b و استنتج أن $b\overline{c}=a$ و استنتج أن بحقق من أن يحقق من أن $b\overline{c}=a$ و أكتب العددين العقديين b و b على الشكل المثلثي 0.5
 - $a=4\left(\cos\left(\frac{\pi}{12}\right)+i\sin\left(\frac{\pi}{12}\right)\right)$ استنتج أن $=4\left(\cos\left(\frac{\pi}{12}\right)+i\sin\left(\frac{\pi}{12}\right)\right)$ 0.5
- C و D و C و التي المستوى العقدي المنسوب إلى معلم متعامد ممنظم مباشر O, \vec{u}, \vec{v} ، نعتبر النقط O, \vec{u}, \vec{v} $d=a^4$ ألحاقها على التوالي هي d و c و d حيث
- O ليكن M بالدوران M الذي مركزه M الذي مركزه M ليكن M بالدوران M الذي مركزه
 - $\frac{\pi}{12}$ و زاویته
 - $z' = \frac{1}{4}az$ أ) تحقق أن 0.5
 - R بالدوران C بالدوران C0.25
 - ج) حدد طبيعة المثلث OBC 0.25
 - د) بين أن $a^4 = 128b$ و استنتج أن النقط O و B و مستقيمية 0.75

0.5

0.5

0.5

1

0.75

0.75

0.5

التمرين الثالث (4 نقاط)

$$g \; x = 2\sqrt{x} - 2 - \ln \; x$$
 : يعتبر الدالة العددية g المعرفة على $0,+\infty$ بما يلي

$$g'(x) = \frac{\sqrt{x}-1}{x}$$
 ، $0,+\infty$ من المجال x من الكل أ) بين أن لكل أ

$$1,+\infty$$
 بين أن الدالة g تزايدية على المجال

$$(2\sqrt{x}-2\leq 2\sqrt{x}$$
 استنتج أن لكل x من المجال $x\leq 2\sqrt{x}$ ، $1,+\infty$ عن المجال x

$$\lim_{x\to +\infty} \frac{\ln x^{-3}}{x^2}$$
 غم استنتج النهاية $0 \le \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}}$ ، المجال $0 < \frac{\ln x^{-3}}{x^2} \le \frac{8}{\sqrt{x}}$

$$0,+\infty$$
 على على g على G $x=x\left(-1+rac{4}{3}\sqrt{x}-\ln x
ight)$: المعرفة بما يلي (G المعرفة بما يلي) أ) بين أن الدالة G المعرفة بما يلي (G المعرفة بما يلي)

$$\int_{1}^{4} g \ x \ dx$$
 ب) أحسب التكامل (ب

المسألة (7 نقاط)

$$(2cm: 10, \vec{i}, \vec{j})$$
 المنحنى الممثل للدالة f في معلم متعامد ممنظم C

$$\lim_{x \to \infty} f(x) = -\infty$$
 بين أن $\lim_{x \to \infty} f(x) = +\infty$ و أن (1 0.5)

$$-\infty$$
 بجوار C مقارب للمنحنى $y=-x+rac{5}{2}$ معادلته $y=-x+rac{5}{2}$ بجوار Δ بجوار Δ

$$-\infty,2+\ln 4$$
 المعادلة Δ على المجال $e^{x-2}-4=0$ ثم بين أن المنحنى C يوجد فوق Δ على المجال $e^{x-2}-4=0$ و تحت Δ على المجال Δ على المجال Δ

بين أن
$$-\infty = \lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$$
 بين أن (3) بين أن 0.5

$$f'(x) = -e^{x-2} - 1^{2}$$
: \mathbb{R} من x فا المناف (4) فين أن لكل بين أن لكل عناف (5) أ

$$f$$
 الدالة ب f ب f ب f ب f بالدالة بالدالة بالدالة f

$$C$$
 كالمنحنى A 2,2 كا أحسب f'' لكل f'' من \mathbb{R} من \mathbb{R} ثم بين أن f'' كا أحسب (5 0.75

$$2+\ln 3 < \alpha < 2+\ln 4$$
 بحيث α بحيث $f(x)=0$ تقبل حلا وحيدا α بحيث (6 α

$$(\ln 3\simeq 1,1)$$
 و $(\ln 2\simeq 0,7)$ و $(\ln 3\simeq 1,1)$ و $(\ln 3\simeq 1,1)$ و $(\ln 3\simeq 1,1)$ و $(\ln 3\simeq 1,1)$ و $(\ln 3\simeq 1,1)$

$$\mathbb{R}$$
 معرقة على f^{-1} معرقة على الدالة f تقبل دالة عكسية الدالة f

ب) أنشئ في نفس المعلم
$$\vec{i}$$
 , \vec{j} المنحنى الممثل للدالة f^{-1} (لاحظ أن المستقيم \vec{o} عمودي على المنصف الأول للمعلم)

$$(f^{-1} 2 - \ln 3 = 2 + \ln 3)$$
 (لاحظ أن $f^{-1} 2 - \ln 3$) $(f^{-1} 2 - \ln 3)$ (خسب $f^{-1} 2 - \ln 3$

تصحيح التمرين الأول

$$u_1 = \frac{2u_0}{2u_0 + 5} = \frac{2 \times \frac{3}{2}}{2 \times \frac{3}{2} + 5} = \frac{3}{3 + 5} = \frac{3}{8}$$
 (1)

$$u_n > 0$$
 ، النبين بالترجع أن لكل n من الترجع (2

$$n=0$$
 من أجل

$$u_0=rac{3}{2}$$
: لدينا

$$u_0 > 0$$
 : إذن

$$n\!\in\!\mathbb{N}$$
 ليكن \checkmark

$$u_n > 0$$
: نفترض أن

$$u_{n+1} > 0$$
: و نبین أن

$$u_n > 0$$
 لدينا ، لافتراض

$$2u_n + 5 > 0$$
 و $2u_n > 0$ إذن

$$\frac{2u_n}{2u_n+5} > 0$$
 إذن $\frac{2u_n}{2u_n+5} > 0$ و منه $\frac{u_{n+1}}{2u_n} > 0$

 $u_{\scriptscriptstyle n}\!>\!0$ نستنتج أن : لكل n من $ilde{\prime}$

(1 (3

$$n \in \mathbb{N}$$
 ليكن \circ

$$u_{n+1}>0$$
 نعلم أن $u_n>0$ إذن من الواضح أن $u_n>0$

$$5 \le 2u_n + 5$$
 لدينا

$$\frac{1}{2u+5} \le \frac{1}{5}$$
 إذن

$$\frac{1}{2u_n+5} \times 2u_n \le \frac{1}{5} \times 2u_n$$
 إذن

$$u_{n+1} \leq \frac{2}{5}u_n$$
 إذن

$$\mathbb N$$
 نستنتج أن $n < u_{n+1} \leq \frac{2}{5}u_n$ نستنتج

$$\mathbb N$$
 من n لكل $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ من $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ من $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$

$$n=0$$
 من أجل

$$rac{3}{2} \left(rac{2}{5}
ight)^0 = rac{3}{2}$$
 و $u_0 = rac{3}{2}$: لينا $0 < u_0 \le rac{3}{2} \left(rac{2}{5}
ight)^0$: يكن $n \in \mathbb{N}$ ليكن \checkmark

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$$
 نفترض أن \triangleright

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1}$$
 و نبین أن \triangleright

$$(1)$$
 (1) $0 < u_{n+1} \le \frac{2}{5}u_n$ نعلم أن

$$0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$$
: وحسب الافتراض لدينا

(2)
$$0 < \frac{2}{5} u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1}$$
 إذن

$$0 < u_{n+1} \le \frac{2}{5} u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1}$$
 من (2) من (1) من (3)

$$0 < u_{n+1} \le \frac{3}{2} \left(\frac{2}{5}\right)^{n+1}$$
 و يالتالي :

$$\mathbb{N}$$
 من n لكل $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ من \checkmark

ب

$$\mathbb{N}$$
 من n لكل $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$ دينا $0 < u_n \le \frac{3}{2} \left(\frac{2}{5}\right)^n$

$$\lim_{n \to +\infty} \frac{3}{2} \left(\frac{2}{5}\right)^n = 0$$
 و منه $\lim_{n \to +\infty} \left(\frac{2}{5}\right)^n = 0$ و بما أن $1 < \frac{2}{5} < 1$ فإن $0 < \frac{2}{5} < 1$

$$\lim_{n\to\infty}u_n=0$$
 : إذن حسب مبر هنة الدرك

$$n \in \mathbb{N}$$
 أيليكن أ (4)

$$v_{n+1} = \frac{4u_{n+1}}{2u_{n+1} + 3}$$

$$= \frac{4(\frac{2u_n}{2u_n + 5})}{2(\frac{2u_n}{2u_n + 5}) + 3}$$

$$= \frac{\frac{8u_n}{2u_n + 5}}{\frac{4u_n + 6u_n + 15}{2u_n + 5}}$$

$$= \frac{8u_n}{10u_n + 15}$$

$$= \frac{2 \times 4u_n}{5 \times (2u_n + 3)}$$

= $\frac{2}{5} imes v_n$ الحن $v_{n+1}=rac{2}{5} imes v_n$ الحن $v_{n+1}=rac{2}{5} imes v_n$ الحن v_n و منه v_n متتالية هندسية أساسها v_n

 $n\!\in\!\mathbb{N}$ ب) ليكن

$$v_0 = \frac{4u_0}{2u_0 + 3} = \frac{4\left(\frac{3}{2}\right)}{2\left(\frac{3}{2}\right) + 3} = \frac{6}{6} = 1$$
 و حدها الأول $q = \frac{2}{5}$ لدينا $q = \frac{2}{5}$ الدينا $q = \frac{2}{5}$

$$v_n = v_0 \times q^n$$
 إذن

$$v_n = 1 \times \left(\frac{2}{5}\right)^n$$
 : إذن

$$\mathbb{N}$$
 اکل $v_n = \left(\frac{2}{5}\right)^n$: منه

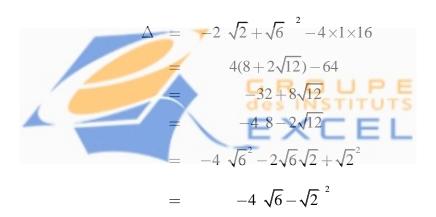
< لدينا: ⊳

$$v_n = \frac{4u_n}{2u_n + 3} \iff 4u_n = 2u_n v_n + 3v_n$$
 $\Leftrightarrow 4u_n - 2u_n v_n = 3v_n$
 $\Leftrightarrow u_n (4 - 2v_n) = 3v_n$
 $\Leftrightarrow u_n = \frac{3v_n}{4 - 2v_n}$

N ندن n کک $u_n = \frac{3\left(\frac{2}{5}\right)^n}{4 - 2\left(\frac{2}{5}\right)^n}$: ناذن :

تصحيح التمرين الثاني

(1)



$$(E) : z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$$

$$\Delta = -4 \sqrt{6} - \sqrt{2}^2$$

$$\downarrow c$$

0

0

(1 (2

$$b\overline{c} = 1 + i\sqrt{3} \quad \sqrt{2} - i\sqrt{2}$$

$$= \sqrt{2} - i\sqrt{2} + i\sqrt{6} + \sqrt{6}$$

$$= \sqrt{6} + \sqrt{2} + i\sqrt{6} - \sqrt{2}$$

$$= a$$

 $ac = b\overline{c}c$ $= b \times |c|^{2}$ $= b \times \left(\sqrt{\sqrt{2}^{2} + \sqrt{2}^{2}}\right)^{2}$ = 4b

$$b=1+i\sqrt{3}$$
 : لدينا $b=1+i\sqrt{3}$ المعدد $b=1+i\sqrt{3}$ المعدد $b=2\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)=2\left(\cos\left(\frac{\pi}{3}\right)+i\sin\left(\frac{\pi}{3}\right)\right)$ $c=\sqrt{2}+i\sqrt{2}$: لدينا $b=1+i\sqrt{3}$ المعدد $c=\sqrt{2}+i\sqrt{2}$ المعدد $c=\sqrt{2}+i\sqrt{2}$ معبار المعدد $c=\sqrt{4}=2$: $c=\sqrt{4}=2$

$$c = 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)$$

$$ac = 4b$$
 الدينا (ج $a = 4\frac{b}{c}$

$$a = 4\frac{2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right)}{2\left(\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right)} = 4 \times \left(\cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)\right) = 4\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$$
افِذَنَ $\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)$

(1 (3

 $\frac{\pi}{12}$ صورة النقطة مركزه O و زاويته M بالدوران M بالدوران M عند M' عند M'

$$z' - 0 = e^{i\frac{\pi}{12}}(z - 0)$$

$$z' = \left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)z$$

$$z' = \frac{1}{4}az$$

R بالدوران C بالدوران C

$$rac{1}{4}ac=rac{1}{4} imes4b=b$$
 لدينا R إذن R هي صورة C بالدوران

$$a = 4\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$$
 لاينا \triangleright

إذن حسب علاقة موافر

$$a^{4} = 4^{4} \left(\cos \left(4\frac{\pi}{12} \right) + i \sin \left(4\frac{\pi}{12} \right) \right) = 256 \left(\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right) = 256 \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = 128 \ 1 + i \sqrt{3} = 128b$$

$$rac{d-0}{b-0}=rac{a^4}{b}=rac{128b}{b}=128$$
 ho بما أن $rac{d-0}{b-0}\in\mathbb{R}$ فإن النقط O و B و D مستقيمية.

تصحيح التمرين الثالث

$$0,+\infty$$
 أ) الدالة g قابلة للاشتقاق على المجال g

$$x \in 0, +\infty$$
 ليكن

$$g'(x) = 2\sqrt{x} - 2 - \ln x = 2 \times \frac{1}{2\sqrt{x}} - 0 - \frac{1}{x} = \frac{1}{\sqrt{x}} - \frac{1}{x}$$

$$g'(x) = \frac{\sqrt{x}-1}{x}$$
 ، $0,+\infty$ اذن : لكل x من المجال

 $x \in 1,+\infty$ ب) ليكن (ب

$$g' x = \frac{\sqrt{x-1}}{x}$$
لدينا

 $\sqrt{x}-1$ بما أن x>0 فإن إشارة x>0

 $x \ge 1$ نعلم أن

 $\sqrt{x} \ge 1$ إذن

$$\sqrt{x}-1 \ge 0$$
 إذن

 $1,+\infty$ منه g' $x \ge 0$ اکل x من

 $X \sqsubseteq \sqsubseteq \sqcup$ پيکن $x \in 1, +\infty$ ليکن

$$0 \le \ln x$$
 لدينا $1 \le x$ لدينا \triangleright

$$1,+\infty$$
 ولدينا $1 \le x$ و الدالة g متصلة و تزايدية على المجال $0 \le 1$

$$g \ 1 \leq g \ x$$
 إذن

$$(g \ 1 = 0 \ \stackrel{\checkmark}{\lor} i) \ 0 \le 2\sqrt{x} - 2 - \ln x$$
 إذن

$$\ln x < 2\sqrt{x} - 2$$
 إذن

$$2\sqrt{x}-2 \le 2\sqrt{x}$$
 وبما أن

$$\ln x \le 2\sqrt{x}$$
 فإن

$$0 \le \ln x \le 2\sqrt{x}$$
 ، $1,+\infty$ المجال x من المجال x

د)

$$x \in 1,+\infty$$
 ليكن

$$0 \le \ln x \le 2\sqrt{x}$$
: (ج (1 السؤال) لدينا حسب نتيجة السؤال

$$0 \le \ln x^{-3} \le 8x\sqrt{x}$$
 : إذن

$$0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8x\sqrt{x}}{x^2} : 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{\ln x^{-3}}{x^2} \leq \frac{8}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt{x}} \cdot 1, +\infty \quad \text{on the point } x = 0 \leq \frac{1}{\sqrt$$

 $(0,+\infty$ الدالة G قابلة للاشتقاق على $0,+\infty$ الدالة G قابلة للاشتقاق على \checkmark

 $x \in 0, +\infty$ ليكن \checkmark

لدىنا ٠

$$G' x = \left(x \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right)\right)'$$

$$= x' \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right) + x \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right)'$$

$$= 1 \times \left(-1 + \frac{4}{3}\sqrt{x} - \ln x\right) + x \times \left(\frac{4}{3} \times \frac{1}{2\sqrt{x}} - \frac{1}{x}\right)$$

$$= -1 + \frac{4}{3}\sqrt{x} - \ln x + \frac{2}{3}\sqrt{x} - 1$$

$$= 2\sqrt{x} - 2 - \ln x$$

$$= g x$$

$$0, +\infty \text{ List in the list is } G' x = g x : 0$$

$$0, +\infty \text{ Substituting } G$$

$$0, +\infty \text{ Substituting } G$$

ب)

$$\int_{1}^{4} g \ x \ dx = \left[G \ x \right]_{1}^{4}$$

$$= G \ 4 - G \ 1$$

$$= 4 \left(\frac{5}{3} - \ln 4 \right) - 1 \left(\frac{1}{3} \right)$$

$$= \frac{19}{3} - 4 \ln 4$$

تصحيح المسألة

(1

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x + \frac{5}{2} - \frac{1}{2} e^{x-2} e^{x-2} - 4 = +\infty$$

$$\lim_{x \to -\infty} -x + \frac{5}{2} = +\infty$$

$$\begin{cases} \lim_{x \to -\infty} -x + \frac{5}{2} = +\infty \\ \lim_{x \to -\infty} \frac{-1}{2} e^{x-2} = \lim_{x \to -\infty} -\frac{e^x}{2e^2} = 0 & \lim_{x \to -\infty} e^x = 0 \\ \lim_{x \to -\infty} e^{x-2} - 4 = -4 \end{cases}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x + \frac{5}{2} - \frac{1}{2} e^{x-2} e^{x-2} - 4 = -\infty$$

$$\lim_{x \to +\infty} -x + \frac{5}{2} = -\infty$$

$$\lim_{x \to +\infty} \frac{-1}{2} e^{x-2} = \lim_{x \to +\infty} -\frac{e^x}{2e^2} = -\infty \qquad \lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to +\infty} e^{x-2} - 4 = +\infty$$
: $\dot{\psi}$

des INSTITUTS

$$\lim_{x \to -\infty} f(x) - \left(-x + \frac{5}{2}\right) = \lim_{x \to -\infty} -\frac{1}{2}e^{x-2} e^{x-2} - 4 = 0$$
ا لاينا (1) لاينا

$$\begin{cases} \lim_{x \to -\infty} \frac{-1}{2} e^{x-2} = \lim_{x \to -\infty} -\frac{e^x}{2e^2} = 0 & \lim_{x \to -\infty} e^x = 0 \\ \lim_{x \to -\infty} e^{x-2} - 4 = -4 & \end{cases}$$

$$-\infty$$
 بجوار C مقارب مائل للمنحنى C بجوار $y=-x+rac{5}{2}$ بجوار Δ

ب)

$$e^{x-2}-4=0$$
 : المعادلة $\mathbb R$ لنحل في

لدينا :

$$e^{x-2} - 4 = 0 \Leftrightarrow e^{x-2} = 4$$

 $\Leftrightarrow x - 2 = \ln 4$
 $\Leftrightarrow x = 2 + \ln 4$

$$S = 2 + \ln 4$$
 : إذن

 Δ لندرس الوضع النسبي للمنحنى C و المستقيم

$$x \in \mathbb{R}$$
 ليكن

$$f \ x \ -\left(-x+rac{5}{2}
ight)=-rac{1}{2}e^{x-2} \ e^{x-2}-4$$
: لدينا $-rac{1}{2}\ e^{x-2}-4$ إذن إشارة $f \ x \ -\left(-x+rac{5}{2}
ight)$ إذن إشارة $e^{x-2}>0$ نعلم أن

x	$-\infty$		2+ln4		$+\infty$
(-1/2)(Exp(x-2)-4)		+	þ	_	

 $\sim -\infty, 2+\ln 4$ المجال کا علی المجال

$$f x - \left(-x + \frac{5}{2}\right) \ge 0$$
: لدينا

 Δ يوجد فوق C

: $2+\ln 4,+\infty$ المجال \checkmark

✓ لدينا:

(3

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{-x + \frac{5}{2} - \frac{1}{2}e^{x-2} e^{x-2} - 4}{x}$$

$$= \lim_{x \to +\infty} -1 + \frac{5}{2x} - \frac{1}{2}\frac{e^{x-2}}{x} e^{x-2} - 4$$

$$= -\infty$$

$$\begin{cases} \lim_{x \to +\infty} -1 + \frac{5}{2x} = -1 \\ \lim_{x \to +\infty} \frac{-1}{2} \frac{e^{x-2}}{x} = \lim_{x \to +\infty} -\frac{1}{2e^2} \frac{e^x}{x} = -\infty & \left(\lim_{x \to +\infty} \frac{e^x}{x} = +\infty\right) : \forall x \in \mathbb{N} \\ \lim_{x \to +\infty} e^{x-2} - 4 = +\infty \end{cases}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$$
 و $\lim_{x \to +\infty} f(x) = -\infty$ بما أن

 $+\infty$ فإن المنحنى C يقبل فر عا شلجميا في اتجاه محور الأراتيب بجوار

$\mathbb R$ أ) الدالة f قابلة للاشتقاق على f

 $x \in \mathbb{R}$ ليكن اليكن الدينا

$$f' x = \left(-x + \frac{5}{2} - \frac{1}{2}e^{x-2} e^{x-2} - 4\right)'$$

$$= -1 - \frac{1}{2} \left(e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2} - 4\right)'$$

$$= -1 - \frac{1}{2} \left(x - 2 e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2} - 4\right)'$$

$$= -1 - \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2} e^{x-2}$$

$$= -\left(1 + \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2}\right)'$$

$$= -1 - \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2}$$

$$= -\left(1 + \frac{1}{2} e^{x-2} e^{x-2} - 4 + e^{x-2}\right)'$$

$$= -1 + e^{x-2} e^{x-2} - 4 + e^{x-2}$$

x	$-\infty$	2	$+\infty$
f'(x)	_	þ	_
f(x)	$+\infty$		\sim

\mathbb{R} قابلة للاشتقاق على f' (5 ليكن $x \in \mathbb{R}$ ليكن لدينا :

(6

$$f'' x = -e^{x-2} - 1^{2}$$

$$= -2 e^{x-2} - 1' e^{x-2} - 1$$

$$= -2 x - 2' e^{x-2} e^{x-2} - 1$$

$$= -2e^{x-2} e^{x-2} - 1$$

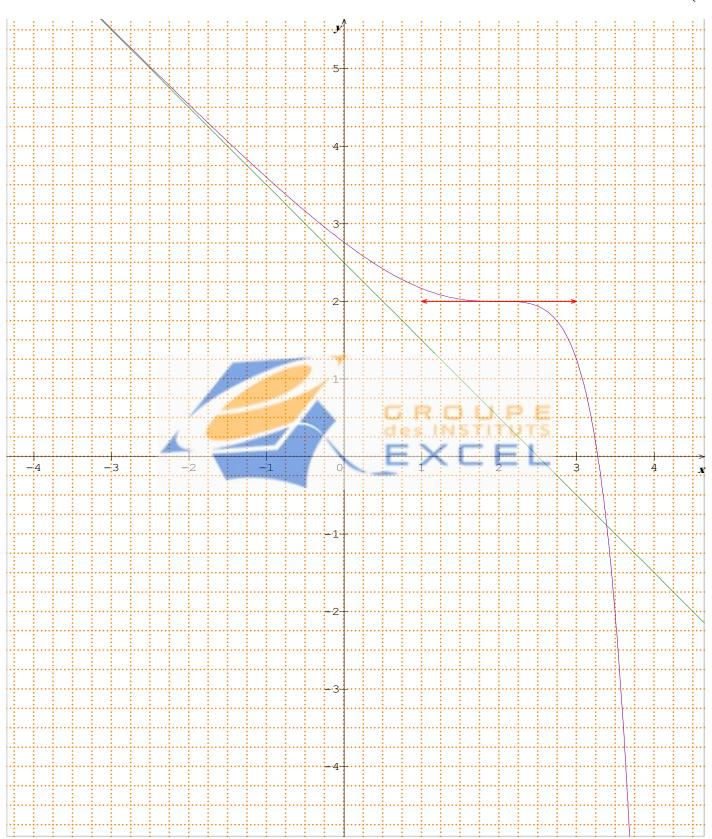
$$= 2e^{x-2} - e^{x-2} + 1$$

$$f'' x = 2e^{x-2} - e^{x-2} + 1 : \mathbb{R}$$

$$\downarrow e^{x} + 1 = 0$$

 $2 + \ln 3 < \alpha < 2 + \ln 4$

x	$-\infty$	2	$+\infty$
f''(x)	+	þ	



 \mathbb{R} انحو f معرفة على مجال J نحو f نحو آله بما أن f متصلة و تناقصية قطعا على \mathbb{R} فإن f تقبل دالة عكسية f^{-1} معرفة على مجال J نحو J حيث J=f \mathbb{R} J=f J=f

(C_f-i)
(C

$$f^{-1}$$
 $^{\prime}$ $2 - \ln 3 = f^{-1}$ $^{\prime}$ f $2 + \ln 3 = \frac{1}{f' 2 + \ln 3} = \frac{1}{-4}$ (ε